A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol

نویسندگان

  • Hong-Zhang Chen
  • Zhi-Hua Liu
  • Shu-Hua Dai
چکیده

BACKGROUND Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. RESULTS TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. CONCLUSIONS SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of nitrogen fertilizer and plant growth regulator on stalk yield and bioethanol in sweet sorghum . Maryam Usofzadeh1 *, Mashalla Daneshvar1, Abbas Almodares2 and Hamid Reza Eisvand1

In this study, the effects of nitrogen fertilizer and plant growth regulator (ethephon) application on leaf chlorophyl, stem height and diameter, stalk yield, total sugar and bioethanol of sweet sorghum were determined. Four nitrogen treatments 0, 100, 200 and 300 Kg Urea ha-1 and four ethephon concentrations 0, 800, 1000, and 1200 ppm were applied on sweet sorghum in a split plot on randomized...

متن کامل

A Novel Wild-Type Saccharomyces cerevisiae Strain TSH1 in Scaling-Up of Solid-State Fermentation of Ethanol from Sweet Sorghum Stalks

The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sor...

متن کامل

Production of bioethanol from sweet sorghum: A review

The consumption of bioethanol as biofule may reduce greenhouse gases, gasoline imports. Also it can be replaced with lead or MTBE (Methyl tert-butyl ether) that are air and underground water pollutants, respectively. Plants are the best choice for meeting the projected bioethanol demands. For this scope, a comparative analysis of the technological options using different feedstocks should be pe...

متن کامل

Studies on Cellulase Production by Solid state Fermentation using Sweet Sorghum bagasse

The present study involves production of cellulolytic enzymes by a newly isolated strain of Aspergillus niger isolated from decaying sugarcane bagasse. Solid-state-fermentation was employed using sweet sorghum bagasse as the substrate for the production of enzyme. One factor at a time approach was used to optimize the process variables like moisture content, pH, temperature, and incubation peri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014